



## **Rise of the mutant weed**

## **GROW** NEXT GEN

### The rise of the mutant weed







#### Goal 1

Locate potential mutations for herbicide resistance

#### Goal 2

Identify the species of pigweed

### **Pre-lecture questions**

- What is a weed?
- How are weeds controlled?
- How might herbicide resistance happen?

#### OSU.EDU

 $\bullet \bullet \bullet < >$ 



HOME WEEDS -RESOURCES -

#### Pigweeds

<u>Pigweed Identification Guide</u> (OSU fact sheet) <u>Managing seed of waterhemp and Palmer amaranth</u> (OSU fact sheet) Palmer amaranth - what it is and what to do now (OSU fact sheet) <u>Herbicide resistance in waterhemp</u> (OSU fact sheet) <u>Pigweed Identification</u> (3-min video) <u>Palmer Amaranth in Ohio and Indiana – what you need to know (11 -min video)</u> <u>Status of Palmer amaranth in Ohio – March 2017</u> (10-min video) Waterhemp Management in Soybeans (USB/Take Action fact sheet) Palmer amaranth ID (USB/Take Action poster) 

Palmer \*

<u>Palmer</u> **Pigwee** 

# **The Ohio State University Extension**

ΤΗΕ ΛΗΙΟ ΟΠΑΤΕ ΠΝΗΥΓΕΡΟΙ



Identify U.OSU.edu/OSUWeeds/Super-weeds/palmer-amaranth





| science.org/sumn                                                                                                                              | science.org/summary/moa.aspx?MOAID=12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
| <section-header><section-header><section-header><figure><figure><image/></figure></figure></section-header></section-header></section-header> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |  |  |  |
| nibition of Enolpyruvyl Shikimate Phosphate Synthase (G/9)<br>by species and country                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |  |  |  |
|                                                                                                                                               | Country                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | First Year |  |  |  |
| juitensis)                                                                                                                                    | 2013 - Argentina<br>2014 - Argentina *Multiple - 2 SOA's<br>2016 - Argentina *Multiple - 2 SOA's<br>2018 - Brazil *Multiple - 2 SOA's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2013       |  |  |  |
|                                                                                                                                               | 2005 - United States (Georgia)<br>2005 - United States (North Carolina)<br>2006 - United States (Arkansas)<br>2006 - United States (South Carolina)<br>2006 - United States (South Carolina)<br>2007 - United States (Tennessee)<br>2007 - United States (New Mexico)<br>2008 - United States (Alabama)<br>2008 - United States (Alabama)<br>2008 - United States (Georgia) *Multiple - 2 SOA's<br>2008 - United States (Mississippi) *Multiple - 2 SOA's<br>2008 - United States (Missouri)<br>2009 - United States (Tennessee) *Multiple - 2 SOA's<br>2010 - United States (Georgia) *Multiple - 3 SOA's<br>2010 - United States (Illinois)<br>2010 - United States (Kentucky)<br>2010 - United States (Leuisiana) | 2005       |  |  |  |

#### weedscience.org/summary/moa.aspx?MOAID=12

| 2011 - United States (Virginia)                    |   |
|----------------------------------------------------|---|
| 2012 - United States (Arizona) *Multiple - 2 SOA's | _ |
| 2012 - United States (Delaware)                    |   |
| 2012 - United States (Indiana)                     |   |
| 2013 - United States (Florida)                     |   |
| 2013 - United States (Florida) *Multiple - 2 SOA's |   |
|                                                    |   |



### Herbicide resistance is an increasing issue

Unrestrained weed growth would **reduce** [The bill = \$43 billion annually]



#### Unrestrained weed growth would reduce crop yield by 50% across US and Canada

### Amaranths (pigweeds)

- Prolific seed producer: 100,000s of seeds
- Dispersed by wildlife, flooding, farming equipment
- Fast growth rate (up to 4 inches per day)
- Up to 78% **yield loss** in soybeans
- Herbicide resistant

# equipment





### Hard to identify young pigweeds







### Hard to identify young pigweeds



#### PALMER AMARANTH



#### **REDROOT PIGWEED**



WATERHEMP

#### POWELL AMARANTH

#### SMOOTH PIGWEED

### **Pigweed seeds**







Figure 4. First observances of resistance to increasing numbers of herbicide classes in Amaranthus tuberculatus over time. Each herbicide class has a different site of action. In all cases except for five-way resistance, resistance to multiple classes was demonstrated to occur within individual plants (in addition to within the population). Data are plotted from resistance cases shown in Fig. 3.

Increasing resistance in pigweeds to multiple classes of herbicides

Source: onlinelibrary.wiley.com/doi/ full/10.1002/ps.6048

# Two types of herbicide resistance

#### 1. Target-site mechanism (most common)

- Herbicide must bind to target to be effective
- Change in target reduces herbicide action

#### 2. Non-target site mechanism

- Metabolic resistance
- Plant breaks down chemical before it reaches its target



### The rise of the mutant weed

A **weed scientist** has collected pigweed seeds from a sunflower processing factory and planted them in the greenhouse. After emergence, she sprayed them with PPO-inhibiting herbicide. After 10 days, she noticed several plants that were resistant.

She sent a leaf sample to the **diagnostic lab** and received back the DNA sequences for the gene that codes for the protein that the herbicide targets. Your job is to identify the species of pigweed and find mutations that may provide herbicide resistance.



### Aims of activity

#### Use the web-based program to:

- Upload fasta sequences for analysis
- Upload a library containing known sequences from various pigweed species
- Use MUSCLE, a bioinformatics tool, to align the unknown sequence with the library
  of known sequences to search for mutations
- Use PHYLIP, a bioinformatics tool, to make a simple phylogenetic tree to identify the pigweed species of the unknown sample.

### Genetic basis for herbicide resistance within the PPX2L gene



**Mutant sequence** 



### **Protein target of PPO-inhibiting herbicides (PPO molecule)**





Wildtype protein: Only space for the herbicide molecule

**Mutant protein:** 

#### structure = function

### Large gap rendering the herbicide less effective

