Integrated Art Project Paper
Pencil Assessment
Match the artistic strategy use

Name____KEY____

Match the artistic strategy used in the project to its literal representation.

		:_		٠.
А	rt	15	u	ı

__F___1. Complementary colors selected in watercolor pencils

__H___2. Selecting a color that contains a component of another color (Example: blue-green and blue)

__E___3. Tearing the illustration paper between the 2 DNA strands

__B___4. Re-painting the amino acid abbreviation stamp

J 5. Viewfinder

__l___6. Amino acid stamp painted in neutral grey; a color with an "industrial" feel

__A___8. Delivery tags

_____9. Matching cotton swabs on the tRNA "tool" painted with colors identified in the key and matching them with complementary colors on the mRNA strand

__G___10. The art project is made on three separate panels

Literal

A. mRNA delivers the DNA sequence that has been copied in the nucleus to the ribosome where it will be matched to the corresponding amino acids

B. tRNA functions repetitively, bringing more of its designated amino acid to the ribosome

C. Annealing of DNA double helix after the mRNA has read the sequence

D. Codon triplets on mRNA bond with anticodon triplets on tRNA

E. Unzipping of the double helix

F. A-T and G-C are complementary nitrogen bases

G. Protein synthesis occurs in three phases – unzipping of the DNA strand, transcription and translation

H. In mRNA, uracil replaces the nitrogen base thymine that is found in DNA

I. Translation results in amino acids that are made by the cell's molecular machinery. These building blocks of proteins are chemically different than nitrogen bases.

J. ribosome

