The Four Groups of Biologically Important Compounds

Group →	Carbohydrates sugars, starches, etc.	Lipids fats, oils, waxes, etc.	Polypeptides & proteins	Nucleic acids DNA & RNA
What elements are found in this group?	carbon, hydrogen and oxygen	carbon, hydrogen and oxygen (nitrogen and phosphorus in some)	carbon, hydrogen, oxygen, nitrogen & usually sulfur	carbon, hydrogen, oxygen, nitrogen, phosphorus
What are the monomers called?	monsaccharides: glucose "blood sugar" fructose "fruit sugar" galactose (these are all isomers of C ₆ H ₁₂ O ₆)	fatty acids and glycerol (make up mono-, di-, & tri- glycerides) •FA are long chain with 1 polar end and 1 non-polar end	amino acids "AA" •20 different amino acids used in making •AAs differ by their R group	nucleotides •each one has a 5-carbon sugar, a N-base and a phosphate group
Dimers and polymers	 disaccharides: maltose=glucose+ glucose sucrose=glucose+ fructose lactose=glucose+ galactose polysaccharides can be single long chains, repeating branched chains of m.s. 	 triglycerides – 3 FA all linked to 1 glycerol (diglycerides have 2 FA linked to 1 glycerol) ex: oils & fats steroids – no FAmade of 4 interlocking carbon rings. classified as a lipid due to not dissolving in water waxes – long chain alcohols 	 •AA join to form polypeptides • the bond between AA is called a peptide bond • 2 or more polypeptide chains "tangle" together to form a protein 	 a nuclei acid is a chain made up of many nucleotides DNA's nucleotides contain deoxyribose; RNA's contain ribose

Submitted by Genee Handley Lincoln High School

	polysaccharide examples:	• lipids do not dissolve in	• hemoglobin has 574 AA	DNA
Other information	• starch is a long-chain glucose	water	arranged in 4 polypeptide chains	• stores info. for all cell
	polymer used by plants to store		· · · · · · · · · · · · · · · · · · ·	activities
	energy	• major component of cell	• proteins have a specific shape	
	e estheless is a lawa shain shusses	membranes	that determines their function. If	RNA
	• cellulose is a long-chain glucose	e store high amounts of	the shape changesit can no	• transfers info. for
	polymer that makes up most of the cell walls in plants. Humans	• store high amounts of	longer do its job	making proteins
	can't break the bonds between the	energy	6 gaparel types of proteins:	
	glucose monomers due to lack of	• protect vital organs and	6 general types of proteins: 1.enzymes*	
	the needed enzyme (i.e. we can't	insulate	2. structural	
	digest itAKA fiber)	insulate	3. contractile	
			4. signal	
	• glycogen is a branching glucose		5. transport	
	polymer sometimes called animal		6. defense	
	starch. Animals can easily break			
	off glucose from glycogen to used		* We will spend time looking	
	the energy.		specifically at enzymes	
	• chitin is a tough polysaccharide in			
	the exoskeletons of insects,			
	shrimp, etc. and in the cell walls			
	of fungi.			
Demonstrations/labs done in class	• testing for sugar using Benedicts	• simple brown paper bag	enzyme demonstrations:	DNA extraction from
	solution	test	• cracker in saliva	foods
	• testing for starches using iodine	• insulation value of fats	• gelatin w/ fresh pineapple vs. canned	
	• taste tests of sugars			
			• gelatin w/ meat tenderizer	
			• enzymatic activity of raw vs.	
			cooked liver	
			• bread vs. with saliva iodine test	